Math 2058, HW 2. Due: 8 Oct 2024, before 11:59 pm

- (1) If S is a non-empty subset of \mathbb{R} which is bounded from above but not below. Suppose the following holds: $[x, y] \subset S$, for all $x, y \in S$. Show that S is either $(-\infty, \alpha]$ or $(-\infty, \alpha)$ for some $\alpha \in \mathbb{R}$.
- (2) Using ε -N terminology, show the followings:
 - (a) $\lim_{n \to +\infty} \frac{n}{n^2 2} = 0.$
 - (b) $\lim_{n \to +\infty} (2n)^{1/n} = 0.$
 - (c) $\lim_{n \to +\infty} 2^n / n! = 0.$
- (3) Suppose (x_n) is a sequence of positive real number such that $\lim_{n\to+\infty} x_{n+1}/x_n = L \in \mathbb{R}.$
 - (a) Show that (x_n) is convergent if $L \in [0, 1)$.
 - (b) Can we conclude the convergence if L = 1? Justify your answer.
- (4) If $x_1 = \sqrt{2}$ and

$$x_{n+1} = \sqrt{2 + \sqrt{x_n}}$$

for all $n \in \mathbb{N}$. Show that (x_n) is convergent and $x_n < 2$ for all $n \in \mathbb{N}$.

(5) If $x_n = \sum_{k=1}^n a_k$ for some sequence (a_k) . Suppose (x_n) is convergent, and (b_k) is another sequence of positive real number which is monotonic increasing and bounded, show that $y_n = \sum_{k=1}^n a_k b_k$ is convergent.